Copied to
clipboard

G = C928C3order 243 = 35

8th semidirect product of C92 and C3 acting faithfully

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C928C3, C33.11C32, C32.29C33, C9.33- 1+2, C9⋊C98C3, C32⋊C9.13C3, (C3×C9).12C32, C3.11(C9○He3), C3.9(C3×3- 1+2), (C3×3- 1+2).6C3, SmallGroup(243,46)

Series: Derived Chief Lower central Upper central Jennings

C1C32 — C928C3
C1C3C32C3×C9C92 — C928C3
C1C32 — C928C3
C1C32 — C928C3
C1C32C32 — C928C3

Generators and relations for C928C3
 G = < a,b,c | a9=b9=c3=1, ab=ba, cac-1=ab3, cbc-1=a6b7 >

Subgroups: 99 in 55 conjugacy classes, 36 normal (8 characteristic)
C1, C3, C3, C3, C9, C9, C32, C32, C3×C9, C3×C9, 3- 1+2, C33, C92, C32⋊C9, C9⋊C9, C3×3- 1+2, C928C3
Quotients: C1, C3, C32, 3- 1+2, C33, C3×3- 1+2, C9○He3, C928C3

Smallest permutation representation of C928C3
On 81 points
Generators in S81
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 77 50 23 71 44 17 62 35)(2 78 51 24 72 45 18 63 36)(3 79 52 25 64 37 10 55 28)(4 80 53 26 65 38 11 56 29)(5 81 54 27 66 39 12 57 30)(6 73 46 19 67 40 13 58 31)(7 74 47 20 68 41 14 59 32)(8 75 48 21 69 42 15 60 33)(9 76 49 22 70 43 16 61 34)
(2 18 24)(3 25 10)(5 12 27)(6 19 13)(8 15 21)(9 22 16)(28 34 31)(29 44 47)(30 51 42)(32 38 50)(33 54 45)(35 41 53)(36 48 39)(37 43 40)(46 52 49)(55 67 76)(56 74 71)(57 60 63)(58 70 79)(59 77 65)(61 64 73)(62 80 68)(66 69 72)(75 78 81)

G:=sub<Sym(81)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,77,50,23,71,44,17,62,35)(2,78,51,24,72,45,18,63,36)(3,79,52,25,64,37,10,55,28)(4,80,53,26,65,38,11,56,29)(5,81,54,27,66,39,12,57,30)(6,73,46,19,67,40,13,58,31)(7,74,47,20,68,41,14,59,32)(8,75,48,21,69,42,15,60,33)(9,76,49,22,70,43,16,61,34), (2,18,24)(3,25,10)(5,12,27)(6,19,13)(8,15,21)(9,22,16)(28,34,31)(29,44,47)(30,51,42)(32,38,50)(33,54,45)(35,41,53)(36,48,39)(37,43,40)(46,52,49)(55,67,76)(56,74,71)(57,60,63)(58,70,79)(59,77,65)(61,64,73)(62,80,68)(66,69,72)(75,78,81)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,77,50,23,71,44,17,62,35)(2,78,51,24,72,45,18,63,36)(3,79,52,25,64,37,10,55,28)(4,80,53,26,65,38,11,56,29)(5,81,54,27,66,39,12,57,30)(6,73,46,19,67,40,13,58,31)(7,74,47,20,68,41,14,59,32)(8,75,48,21,69,42,15,60,33)(9,76,49,22,70,43,16,61,34), (2,18,24)(3,25,10)(5,12,27)(6,19,13)(8,15,21)(9,22,16)(28,34,31)(29,44,47)(30,51,42)(32,38,50)(33,54,45)(35,41,53)(36,48,39)(37,43,40)(46,52,49)(55,67,76)(56,74,71)(57,60,63)(58,70,79)(59,77,65)(61,64,73)(62,80,68)(66,69,72)(75,78,81) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,77,50,23,71,44,17,62,35),(2,78,51,24,72,45,18,63,36),(3,79,52,25,64,37,10,55,28),(4,80,53,26,65,38,11,56,29),(5,81,54,27,66,39,12,57,30),(6,73,46,19,67,40,13,58,31),(7,74,47,20,68,41,14,59,32),(8,75,48,21,69,42,15,60,33),(9,76,49,22,70,43,16,61,34)], [(2,18,24),(3,25,10),(5,12,27),(6,19,13),(8,15,21),(9,22,16),(28,34,31),(29,44,47),(30,51,42),(32,38,50),(33,54,45),(35,41,53),(36,48,39),(37,43,40),(46,52,49),(55,67,76),(56,74,71),(57,60,63),(58,70,79),(59,77,65),(61,64,73),(62,80,68),(66,69,72),(75,78,81)]])

C928C3 is a maximal subgroup of   C9211C6

51 conjugacy classes

class 1 3A···3H3I3J9A···9X9Y···9AN
order13···3339···99···9
size11···1993···39···9

51 irreducible representations

dim1111133
type+
imageC1C3C3C3C33- 1+2C9○He3
kernelC928C3C92C32⋊C9C9⋊C9C3×3- 1+2C9C3
# reps126162618

Matrix representation of C928C3 in GL6(𝔽19)

600000
060000
006000
000490
00001511
000120
,
576000
001000
101014000
000960
0000101
0007140
,
193000
0110000
007000
0001100
0001370
0001701

G:=sub<GL(6,GF(19))| [6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,4,0,1,0,0,0,9,15,2,0,0,0,0,11,0],[5,0,10,0,0,0,7,0,10,0,0,0,6,1,14,0,0,0,0,0,0,9,0,7,0,0,0,6,10,14,0,0,0,0,1,0],[1,0,0,0,0,0,9,11,0,0,0,0,3,0,7,0,0,0,0,0,0,11,13,17,0,0,0,0,7,0,0,0,0,0,0,1] >;

C928C3 in GAP, Magma, Sage, TeX

C_9^2\rtimes_8C_3
% in TeX

G:=Group("C9^2:8C3");
// GroupNames label

G:=SmallGroup(243,46);
// by ID

G=gap.SmallGroup(243,46);
# by ID

G:=PCGroup([5,-3,3,3,-3,3,301,366,1352,102]);
// Polycyclic

G:=Group<a,b,c|a^9=b^9=c^3=1,a*b=b*a,c*a*c^-1=a*b^3,c*b*c^-1=a^6*b^7>;
// generators/relations

׿
×
𝔽